Music Mood and Theme Classification - a Hybrid Approach
نویسندگان
چکیده
Music perception is highly intertwined with both emotions and context. Not surprisingly, many of the users’ information seeking actions aim at retrieving music songs based on these perceptual dimensions – moods and themes, expressing how people feel about music or which situations they associate it with. In order to successfully support music retrieval along these dimensions, powerful methods are needed. Still, most existing approaches aiming at inferring some of the songs’ latent characteristics focus on identifying musical genres. In this paper we aim at bridging this gap between users’ information needs and indexed music features by developing algorithms for classifying music songs by moods and themes. We extend existing approaches by also considering the songs’ thematic dimensions and by using social data from the Last.fm music portal, as support for the classification tasks. Our methods exploit both audio features and collaborative user annotations, fusing them to improve overall performance. Evaluation performed against the AllMusic.com ground truth shows that both kinds of information are complementary and should be merged for enhanced classification accuracy.
منابع مشابه
Music Mood Classification of Television Theme Tunes
This paper introduces methods used for Music Mood Classification to assist in the automated tagging of television programme theme tunes for the first time. The methods employed use a knowledge driven approach with tailored parameters extractable from the Matlab MIR Toolbox [1]. Four new features were developed, three based on tonality and one on tempo, to enable a degree of quantified tagging, ...
متن کاملAutomatic Identification and Classification of the Iranian Traditional Music Scales (Dastgāh) and Melody Models (Gusheh): Analytical and Comparative Review on Conducted Research
Background and Aim: Automatic identification and classification of the Iranian traditional music scales (Dastgāh) and melody models (Gusheh) has attracted the attention of the researchers for more than a decade. The current research aims to review conducted researches on this area and consider its different approached and obstacles. Method: The research approach is content analysis and data col...
متن کاملشناسایی خودکار سبک موسیقی
Nowadays, automatic analysis of music signals has gained a considerable importance due to the growing amount of music data found on the Web. Music genre classification is one of the interesting research areas in music information retrieval systems. In this paper several techniques were implemented and evaluated for music genre classification including feature extraction, feature selection and m...
متن کاملA hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملLyric Text Mining in Music Mood Classification
This research examines the role lyric text can play in improving audio music mood classification. A new method is proposed to build a large ground truth set of 5,585 songs and 18 mood categories based on social tags so as to reflect a realistic, user-centered perspective. A relatively complete set of lyric features and representation models were investigated. The best performing lyric feature s...
متن کامل